
pysparkling v0.3
A pure Python implementation of Spark’s
RDD interface.

Sven Kreiss
New York, August 15-16, 2015

I am a Data Scientist at
Wildcard. We launched last
Tuesday and are currently
featured in the App Store as
“Best New App”. 

We are looking to grow our data
engineering team.

#pysparkling @svenkreiss

pysparkling

�3

Strengths

small data

Python microservice  
backend  

(latency, dependencies)

local development 
environment

backend for spot checking
data tool

Weaknesses

Big Data processing  
(use Spark)

distributed sort 
(use Spark)

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss

#pysparkling @svenkreiss

Example Data Pipeline

Some details make this pipeline more complicated than simple maps: joins with labeled
truth, random splits for train-test-split, failure resolution for scraping, caching.

�4

URLs scrape articles, products, people structured data

Example: Join Two
Datasets by URL

Complication: the first
dataset contains records
with redirected and original
URLs and the second
dataset is keyed only by
one URL, but it can be
either.

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss

#pysparkling @svenkreiss

pysparkling.fileio

Read lines from a text file:

→ lines from a text file are read seamlessly from different locations and with different  
 compressions. Multiple files can be specified in a comma separated list. The wildcard  
 characters ? and * are resolved.

You can use the lower level functions using the pysparkling.fileio.File and
pysparkling.fileio.TextFile classes that implement the methods load(), dump() and
exists().

�5

> c = pysparkling.Context()
>
> rdd = c.textFile(‘my_textfile.txt’)
> rdd = c.textFile(‘my_textfile.txt.gz’)
> rdd = c.textFile(‘my_textfile.txt.bz2’)  
> rdd = c.textFile(‘http://www.svenkreiss.com/my_textfile.txt’)  
> rdd = c.textFile(‘s3n://this_bucket_does_not_exist/my_textfile.txt')  
> rdd = c.textFile(‘hdfs://localhost/user/hadoop/my_textfile.txt.gz')

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss

#pysparkling @svenkreiss

Basic Operations and Partitions
As in Spark, you have to specify the number of partitions of the data:

creates 20 partitions of the numbers 0 … 99. Now, add 10 to every number.

As in Spark, all operations are lazy and so far, none of the maps were executed. Cache
this RDD at this step once it gets evaluated.

Now get the first element:

This triggers the computation of the first partition (and the first partition only), caches it and
returns the first element from it.

�6

> c = pysparkling.Context()
> rdd = c.parallelize(range(100), 20)

> rdd = rdd.map(lambda n: n + 10)

> rdd = rdd.cache()

> f = rdd.first()

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss

#pysparkling @svenkreiss

Almost a Real World Example:  
Distributed Computation of a Confusion Matrix

Input: A map operation applied a classifier to a large
number of samples. At this stage, we have pairs of
predicted and true class labels for every sample.

Precision, Recall, Support and F-scores are simple
sums and ratios of elements in the confusion table.

�7

https://en.wikipedia.org/wiki/
Confusion_matrix

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
https://en.wikipedia.org/wiki/Confusion_matrix

#pysparkling @svenkreiss

Almost a Real World Example:  
Distributed Computation of a Confusion Matrix

sequence operation seqOp: pair to confusion matrix 
combination operation combOp: sum the confusion matrices

�8

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss

#pysparkling @svenkreiss

Parallel Processing (Experimental)
Initial support for any pool instance with a map(iterable, func) method.

Maps are chained: applying rdd.map() operations consecutively results in a single
multiprocessing map run.

Intermediate caches are preserved: intermediate caches in chained map operations are
available for further calculations. 

Other possible pool objects: futures.ThreadPoolExecutor,
futures.ProcessPoolExecutor, IPython.parallel views.

�9

> c = pysparkling.Context(
 pool=multiprocessing.Pool(7),
 serializer=cloudpickle.dumps,
 deserializer=pickle.loads,
)

The underlying parallelization frameworks only parallelize map operations. Any
operation based on shuffles, sorts, groups, … is still run locally. Those functions are

marked in the API documentation.

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss

#pysparkling @svenkreiss

Documentation: API

Contains embedded
example code and
example output for
almost every
function. Those are
automatically run as
part of the test suite
on every commit and
are guaranteed to
work.

�10

http://pysparkling.trivial.io/v0.3/

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
http://pysparkling.trivial.io/v0.3/

#pysparkling @svenkreiss

Documentation: Demos

�11

https://github.com/svenkreiss/pysparkling/blob/master/docs/demo.ipynb

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
https://github.com/svenkreiss/pysparkling/blob/master/docs/demo.ipynb

#pysparkling @svenkreiss

Summary

Install:

Documentation: pysparkling.trivial.io
Github: https://github.com/svenkreiss/pysparkling
 contribute questions, issues, pull requests,  
 documentation, examples 
Slides: trivial.io

 @svenkreiss
 me@svenkreiss.com

�12

$ pip install pysparkling[s3,http,hdfs]

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
http://pysparkling.trivial.io
https://github.com/svenkreiss/pysparkling
http://trivial.io
http://www.twitter.com/svenkreiss
mailto:me@svenkreiss.com

