
pysparkling v0.3
A pure Python implementation of Spark’s 
RDD interface.

Sven Kreiss
New York, August 15-16, 2015



I am a Data Scientist at 
Wildcard. We launched last 
Tuesday and are currently 
featured in the App Store as 
“Best New App”. 

We are looking to grow our data 
engineering team.
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pysparkling
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Strengths

small data

Python microservice  
backend  

(latency, dependencies)

local development 
environment

backend for spot checking 
data tool

Weaknesses

Big Data processing  
(use Spark)

distributed sort 
(use Spark)

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
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Example Data Pipeline

Some details make this pipeline more complicated than simple maps: joins with labeled 
truth, random splits for train-test-split, failure resolution for scraping, caching.
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URLs scrape articles, products, people structured data

Example: Join Two 
Datasets by URL

Complication: the first 
dataset contains records 
with redirected and original 
URLs and the second 
dataset is keyed only by 
one URL, but it can be 
either.

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
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pysparkling.fileio

Read lines from a text file:

→ lines from a text file are read seamlessly from different locations and with different  
     compressions. Multiple files can be specified in a comma separated list. The wildcard  
     characters ? and * are resolved.

You can use the lower level functions using the pysparkling.fileio.File and 
pysparkling.fileio.TextFile classes that implement the methods load(), dump() and 
exists().
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> c = pysparkling.Context()
> 
> rdd = c.textFile(‘my_textfile.txt’)
> rdd = c.textFile(‘my_textfile.txt.gz’)
> rdd = c.textFile(‘my_textfile.txt.bz2’)  
> rdd = c.textFile(‘http://www.svenkreiss.com/my_textfile.txt’)  
> rdd = c.textFile(‘s3n://this_bucket_does_not_exist/my_textfile.txt')  
> rdd = c.textFile(‘hdfs://localhost/user/hadoop/my_textfile.txt.gz')

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
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Basic Operations and Partitions
As in Spark, you have to specify the number of partitions of the data:

creates 20 partitions of the numbers 0 … 99. Now, add 10 to every number.

As in Spark, all operations are lazy and so far, none of the maps were executed. Cache 
this RDD at this step once it gets evaluated.

Now get the first element:

This triggers the computation of the first partition (and the first partition only), caches it and 
returns the first element from it.
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> c = pysparkling.Context()
> rdd = c.parallelize(range(100), 20)

> rdd = rdd.map(lambda n: n + 10)

> rdd = rdd.cache()

> f = rdd.first()

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
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Almost a Real World Example:  
Distributed Computation of a Confusion Matrix

Input: A map operation applied a classifier to a large 
number of samples. At this stage, we have pairs of 
predicted and true class labels for every sample.

Precision, Recall, Support and F-scores are simple 
sums and ratios of elements in the confusion table.

�7

https://en.wikipedia.org/wiki/
Confusion_matrix 

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
https://en.wikipedia.org/wiki/Confusion_matrix
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Almost a Real World Example:  
Distributed Computation of a Confusion Matrix

sequence operation seqOp: pair to confusion matrix 
combination operation combOp: sum the confusion matrices 
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https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
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Parallel Processing (Experimental)
Initial support for any pool instance with a map(iterable, func) method.

Maps are chained: applying rdd.map() operations consecutively results in a single 
multiprocessing map run.

Intermediate caches are preserved: intermediate caches in chained map operations are 
available for further calculations. 

Other possible pool objects: futures.ThreadPoolExecutor, 
futures.ProcessPoolExecutor, IPython.parallel views.
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> c = pysparkling.Context(
       pool=multiprocessing.Pool(7),
       serializer=cloudpickle.dumps,
       deserializer=pickle.loads,
  )

The underlying parallelization frameworks only parallelize map operations. Any 
operation based on shuffles, sorts, groups, … is still run locally. Those functions are 

marked in the API documentation.

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
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Documentation: API

Contains embedded 
example code and 
example output for 
almost every 
function. Those are 
automatically run as 
part of the test suite 
on every commit and 
are guaranteed to 
work.
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http://pysparkling.trivial.io/v0.3/

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
http://pysparkling.trivial.io/v0.3/
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Documentation: Demos
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https://github.com/svenkreiss/pysparkling/blob/master/docs/demo.ipynb 

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
https://github.com/svenkreiss/pysparkling/blob/master/docs/demo.ipynb
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Summary

Install: 

Documentation: pysparkling.trivial.io  
Github: https://github.com/svenkreiss/pysparkling 
    contribute questions, issues, pull requests,  
    documentation, examples 
Slides: trivial.io  

     @svenkreiss  
     me@svenkreiss.com 
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$ pip install pysparkling[s3,http,hdfs]

https://twitter.com/hashtag/pysparkling
http://www.twitter.com/svenkreiss
http://pysparkling.trivial.io
https://github.com/svenkreiss/pysparkling
http://trivial.io
http://www.twitter.com/svenkreiss
mailto:me@svenkreiss.com

